0

Predictive Machine Learning for Main Drive Torque Estimation in Earth Pressure Balanced Tunnelling

Considering Reciprocal Effects of EPB Tunnelling in Soft and Mixed Ground

Erschienen am 29.12.2023, Auflage: 1. Auflage
CHF 60,50
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783844092462
Sprache: Deutsch
Umfang: 180
Format (T/L/B): 21.0 x 14.0 cm

Beschreibung

Zentraler Bestandteil Erddruckgestützter Tunnelbohrmaschinen (EPB TBMs) sind die Motoren des Hauptantriebs, deren Leistung ausreichend zu bemessen ist, um das Schneidrad während des gesamten Tunnelvortriebs zu drehen und den Boden auszuheben. Die optimierte Bemessung des Hauptantriebs ist entscheidend für die Energieeffizienz, wobei Leistungsminderungen bis hin zur Blockade zu verhindern sind. EPB-TBMs nutzen zur aktiven Ortsbruststützung das ausgehobene Bodenmaterial, wobei Wechselwirkungen zwischen TBM und Boden eine Herausforderung darstellen. Im Rahmen dieser Dissertation wurde unter Berücksichtigung der Wechselwirkungen ein Modell zur Abschätzung des Drehmoments auf Basis des maschinellen Lernens (ML) entwickelt. Das robuste Modell ermöglicht optimierte Vorhersagen des nominalen Hauptlager Drehmomentes sowie des maximal zu erwartenden Drehmomentes im Regelvortrieb und gewährleistet die Interpretier- und Übertragbarkeit zur Anwendung bei zukünftigen EPB Projekten.

Weitere Artikel aus der Kategorie "Technik"

Alle Artikel anzeigen