Autorenportrait
Inhaltsangabe1 Overall planning.- 1.0 Symbols.- 1.1 Development stages of a transmission project.- 1.2 Transmission planning.- 1.2.1 Objective.- 1.2.2 Planning stages.- 1.2.3 Planning aspects regarding transmission lines.- 1.3 Planning methods.- 1.3.1 Data acquisition and preparation.- 1.3.2 Formulation and preselection of alternatives.- 1.3.3 Electrical studies.- 1.3.4 Economic studies and final evaluation.- 1.4 Planning criteria.- 1.4.1 General.- 1.4.2 Criteria for steady-state conditions.- 1.4.3 Criteria for temporary and transient conditions.- 1.5 Evolution and selection of voltage levels.- 1.5.1 Evolution of transmission voltages.- 1.5.2 Introduction of transmission voltages.- 1.6 Conductor selection.- 1.7 Selection of line configuration.- 1.8 Direct current transmission.- 1.8.1 Aspects of DC transmission components.- 1.8.2 Economic comparison of DC and AC lines.- 1.8.3 Technical comparison of AC and DC transmission.- 1.8.4 Practical use of DC transmission.- 1.9 Transmission with higher order phase lines.- 1.9.1 Options.- 1.9.2 Properties of multiple-phase systems.- 1.9.3 Present experience.- 1.10 Investments.- 1.11 Licences and permit procedures.- 1.12 Underground transmission versus overhead lines.- 1.12.1 Application and planning aspects.- 1.12.2 Environmental constraints.- 1.12.3 Technical limitations.- 1.12.4 Comparative investments.- 1.12.5 Perspectives.- 1.13 Results of overall planning.- 1.14 References.- 2 Electric requirements and design.- 2.0 Symbols.- 2.1 Overhead lines as components of electric systems.- 2.1.1 Surge impedance and surge impedance load (natural power).- 2.1.2 Stability.- 2.1.3 Voltage regulation and maximum permissible losses.- 2.1.4 Capability of a line.- 2.1.5 Reliability and availability.- 2.1.6 Reactive power compensation.- 2.1.7 Power transmitted versus right-of-way width.- 2.2 Current-related phenomena.- 2.2.1 Normal and emergency conditions.- 2.2.2 Ohmic losses.- 2.2.3 Short circuit condition.- 2.3 Voltage and current-related phenomena.- 2.3.1 Introduction.- 2.3.2 Electrical and magnetic fields.- 2.3.3 Corona phenomena and related effects.- 2.3.4 Audible noise (AN).- 2.3.5 Impact of line design on voltage- and current-depending phenomena.- 2.4 Line performance and insulation requirements.- 2.4.1 Introduction.- 2.4.2 Power frequency voltages and temporary overvoltages.- 2.4.3 Slow-front overvoltages.- 2.4.4 Fast-front overvoltages.- 2.4.5 Principles of insulation coordination.- 2.4.6 Live-line maintenance.- 2.5 Clearances.- 2.5.1 Clearance requirements.- 2.5.2 Internal and external clearances.- 2.6 References.- 3 Electric parameters.- 3.0 Symbols.- 3.1 Introduction.- 3.2 Resistance.- 3.3 Positive-sequence impedance.- 3.3.1 Introduction.- 3.3.2 Inductance and inductive Reactance.- 3.4 Zero-sequence impedance.- 3.4.1 Introduction.- 3.4.2 Simplified approach for the determination of zero-sequence impedances.- 3.5 Capacitance and capacitive reactance.- 3.5.1 General considerations.- 3.5.2 Single-circuit lines.- 3.5.3 Double-circuit lines.- 3.6 Admittance.- 3.7 Electric representation of lines.- 3.7.1 Goals and basic conditions.- 3.7.2 Short- and medium-length lines.- 3.7.3 Long-length transmission lines.- 3.8 References.- 4 Lightning protection.- 4.0 Symbols.- 4.1 Significance of lightning.- 4.2 Formation of lightning strokes.- 4.2.1 Mechanism of lightning discharge.- 4.2.2 Impulse behaviour of lightning discharges.- 4.2.3 Electric characteristics of the discharges.- 4.3 Frequency and intensity of lightning strokes.- 4.3.1 Keraunic levels and earth flash density.- 4.3.2 Magnitude of lightning stroke currents.- 4.3.3 Direct and indirect lightning strokes.- 4.4 Arrangement and efficiency of earth wires.- 4.4.1 Theoretical background.- 4.4.2 Effective shielding by earth wires.- 4.4.3 Surge arresters.- 4.4.4 Assessment of lightning performance of overhead lines.- 4.5 Earthing in view of lightning protection.- 4.5.1 Significance of earthing for lightning protection.- 4.5.2 Surge impedance of earthing systems