Beschreibung
Appendix 164 3. A 3. A. 1 Approximate Estimation of Fundamental Matrix from General Matrix 164 3. A. 2 Estimation of Affine Transformation 165 4 RECOVERY OF EPIPOLAR GEOMETRY FROM LINE SEGMENTS OR LINES 167 Line Segments or Straight Lines 168 4. 1 4. 2 Solving Motion Using Line Segments Between Two Views 173 4. 2. 1 Overlap of Two Corresponding Line Segments 173 Estimating Motion by Maximizing Overlap 175 4. 2. 2 Implementation Details 4. 2. 3 176 Reconstructing 3D Line Segments 4. 2. 4 179 4. 2. 5 Experimental Results 180 4. 2. 6 Discussions 192 4. 3 Determining Epipolar Geometry of Three Views 194 4. 3. 1 Trifocal Constraints for Point Matches 194 4. 3. 2 Trifocal Constraints for Line Correspondences 199 4. 3. 3 Linear Estimation of K, L, and M Using Points and Lines 200 4. 3. 4 Determining Camera Projection Matrices 201 4. 3. 5 Image Transfer 203 4. 4 Summary 204 5 REDEFINING STEREO, MOTION AND OBJECT RECOGNITION VIA EPIPOLAR GEOMETRY 205 5. 1 Conventional Approaches to Stereo, Motion and Object Recognition 205 5. 1. 1 Stereo 205 5. 1. 2 Motion 206 5. 1. 3 Object Recognition 207 5. 2 Correspondence in Stereo, Motion and Object Recognition as 1D Search 209 5. 2. 1 Stereo Matching 209 xi Contents 5. 2. 2 Motion Correspondence and Segmentation 209 5. 2. 3 3D Object Recognition and Localization 210 Disparity and Spatial Disparity Space 210 5.
Autorenportrait
InhaltsangabeForeword; Olivier Faugeras. Foreword; Saburo Tsuji. Preface. 1. Introduction. 2. Camera Models and Epipolar Geometry. 3. Recovery of Epipolar Geometry From Points. 4. Recovery of Epipolar Geometry from Line Segments or Lines. 5. Redefining Stereo, Motion and Object Recognition via Epipolar Geometry. 6. Image Matching and Uncalibrated Stereo. 7. Multiple Rigid Motions: Correspondence and Segmentation. 8. 3D Object Recognition and Localization with Model Views. 9. Concluding Remarks. References. Index.