Beschreibung
Bachelorarbeit aus dem Jahr 2018 im Fachbereich BWL - Sonstiges, Note: 1,3, SRH Hochschule Riedlingen, Sprache: Deutsch, Abstract: Die Finanzkrise 2008 machte deutlich, dass traditionelle, statische Anlagenallokations-Modelle in unterschiedlichen Marktsituationen nicht immer vorteilhafte Ergebnisse liefern. Vor allem in turbulenten Marktphasen zeigten statisch allokierte Portfolios nicht den gewünschten Diversifikationseffekt. Auf Basis dieser Erkenntnisse beschäftigt sich die nachstehende Bachelor-Thesis mit dem Aufbau einer dynamischen Anlagenallokation auf Basis monatlicher Value-at-Risk (VaR)-Prognosen und liefert hierzu einen theoretischen, methodischen und empirischen Beitrag. Die VaR-Prognose findet dabei durch die Anwendung einer Monte-Carlo-Simulation mit zeitveränderlichen Volatilitäten statt, welche durch ein GARCH(1,1)-Modell geschätzt werden. Dadurch wird ein Modell etabliert, das im Vergleich zu einer vorher definierten Benchmark-Allokation in der Lage ist, Kapitalmarktrisiken frühzeitig zu erkennen und dahingehend Risikopositionen im Portfolio abzubauen.