Calcium & Contractility
Smooth Muscle, Contemporary Biomedicine 5
K Grover, A / E Daniels, /
Erschienen am
01.10.2007
Beschreibung
In organizing the present volume, we had two intentions. The first was to present the best current understanding of the mechanisms of calcium mobilization during excitation contraction coupling of smooth muscle at a level suited to the needs of professionals interested in smooth muscle pharmacology and pathophysiology, while remaining appreciable by graduate and medical students. The second intention was to provide in sight into present-day controversies, as well as the latest ad vances achieved by researchers in this field. Thus, we have thor oughly discussed both the techniques and the concepts derived from their application. An attempt has also been made here to answer a number of profoundly important questions: What are the mechanisms and agents responsible for the control of contractility? What are the accompanying changes in the state of intracellular calcium ions and the mechanisms responsible for them? How does the regula tion of contractility occur directly at the level of the actomyosin activity? What role do gap junctions play in cell-to-cell coupling? What are the roles of cholinergic, adrenergic, peptidergic, and nonadrenergic noncholinergic interactions in calcium mobiliza tion in smooth muscle? What changes occur in hypertension? The impact of these recent techniques on future research is also reflected upon.
Autorenportrait
Inhaltsangabe1 Structure of Smooth Muscle.- 1. Introduction.- 2. Organization and Arrangement of Smooth Muscle.- 2.1. Organization of the Uterus and Arrangement of the Myometrium.- 3. Morphology of the Smooth Muscle Cell.- 3.1. Size and Shape of Smooth Muscle Cells.- 3.2. Plasma Membrane.- 3.3. Sarcoplasmic Reticulum.- 3.4. Mitochondria and Other Organelles.- 3.5. Myofilaments.- 4. Innervation of Smooth Muscle.- 4.1. Innervation of the Myometrium.- 5. Structure of Cultured Cells.- 6. Localization of Ca2+ in Smooth Muscle.- 6.1. Precipitating Agents, Dyes, and Autoradiography.- 6.2. Electron Probe and Electron Energy Loss Analysis of Smooth Muscle.- References.- 2 Calcium Antagonists and Ionophores.- 1. Introduction.- 2. Calcium Channel Antagonists.- 2.1. Pharmacology.- 2.2. Structure-Activity Relationships.- 2.3. Sites of Action.- 3. Calcium lonophores.- 4. Summary.- References.- 3 Calcium Compartments and Mobilization During Contraction of Smooth Muscle.- 1. Introduction.- 2. Calcium Entry.- 2.1. Intrinsic Ca2+ Leak.- 2.2. Ca2+ Entry Stimulated by Membrane Depolarization.- 2.3. Receptor-Stimulated Ca2+ Entry.- 2.4. Role of Surface Bound Ca2+.- 3. Release of Intracellularly Bound Ca2+.- 3.1. Agonist-Induced Release of Cai.- 3.2. Caffeine-Induced Release of Cai.- 3.3. Ca2+-Induced Release of Cai.- 4. Modulation of Intracellular Ca2+ Sequestration.- 4.1. Ca2+ Sequestration During Relaxation.- 4.2. Agonist-Induced Alterations in Intracellular Ca2+ Sequestration.- 5. Summary.- References.- 4 Mechanisms of Smooth Muscle Relaxation.- 1. Introduction.- 2. Relaxation Mediated by Direct and Indirect Actions on Smooth Muscle.- 2.1. Actions at the Cell Membrane.- 2.2. Intracellular Actions.- 2.3. Involvement of Endothelium in Relaxation of Vascular Tissue.- 3. Mechanisms of Relaxation.- 3.1. Relaxation Through Interaction with Cyclic Nucleotides.- 3.2. Relaxation by Interaction with Calmodulin Entry.- 3.3. Relaxation Through Blockade of Calcium Entry.- 4. Concluding Remarks.- References.- 5 Smooth Muscle Relaxants.- 1. Introduction.- 2. Beta-Adrenoceptor Agonists.- 2.1. Isoproterenol.- 2.2. Selective Beta2-Adrenoceptor Agonists.- 3. The Xanthines.- 3.1. Pharmacological Actions.- 3.2. Pharmacokinetics.- 3.3. Toxicities and Side Effects.- 3.4. Therapeutic Uses.- 4. Alpha-Adrenoceptor Antagonists.- 4.1. Prazosin.- 5. Calcium-Channel Antagonists.- 5.1. Verapamil.- 5.2. Nifedipine.- 5.3. Diltiazem.- 5.4. Perhexiline.- 6. Nonspecific Vasodilators.- 6.1. Organic Nitrates and Nitrites.- 6.2. Hydralazine.- 6.3. Diazoxide.- 6.4. Sodium Nitroprusside.- 6.5. Minoxidil.- References.- 6 Cell-to-Cell Communication in Smooth Muscle.- 1. Introduction.- 2. Cell-to-Cell Junctions.- 2.1. Structural Studies.- 2.2. Methods for Quantification of Gap Junctions.- 2.3. Functional Studies of Gap Junctions.- 2.4. Regulation of Gap Junctions.- 3. Myometrial Gap Junctions.- 3.1. Presence of Myometrial Gap Junctions.- 3.2. Function of Myometrial Gap Junctions.- 3.3. Regulation of Gap Junctions in the Myometrium.- 4. Summary.- References.- 7 Calcium Regulation of Smooth Muscle Actomyosin.- 1. Introduction.- 2. Components of the Contractile Apparatus.- 2.1. Thick Filament.- 2.2. Thin Filament.- 3. Proteins Involved in the Phosphorylation and Dephosphorylation of Myosin.- 4. Effect of Phosphorylation of Myosin Light-Chain on the Properties of Myosin.- 4.1. Functional Changes.- 4.2. Structural Changes.- 5. Effect of Tropomyosin on the Actin-Activated ATP Hydrolysis.- 6. Direct Effect of Mg2+ and Ca2+ on Actin-Activation of Phosphorylated Myosin.- 7. Evidence for the Actin-Linked System in the Regulation of Actomyosin ATPase.- 8. Summary.- References.- 8 Studies on Skinned Fiber Preparations.- 1. Introduction.- 2. Methodology.- 2.1. Skinning Procedures.- 2.2. Criteria for Acceptable Models.- 3. Intracellular Ca2+ Store.- 4. Control of Actomyosin Interaction.- 4.1. Mechanism of Ca2+ Activation.- 4.2. Cyclic Nucleotides in Smooth Muscle Relaxation.- 4.3. Catch Mechanism.- 5. Effect of Ca